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Abstract 

Background Sepsis, characterized by organ dysfunction due to presumed or proven infection, has a case-fatality 
over 20% in severe cases in low-and-middle income countries. Early diagnosis and treatment have proven benefits, 
prompting our implementation of Smart Triage at Jinja Regional Referral Hospital in Uganda, a program that expe-
dites treatment through a data-driven triage platform. We conducted a cost-effectiveness analysis of Smart Triage 
to explore its impact on patients and inform multicenter scale up.

Methods The parent clinical trial for Smart Triage was pre-post in design, using the proportion of children receiving 
sepsis treatment within one hour as the primary outcome, a measure linked to mortality benefit in existing literature. 
We used a decision-analytic model with Monte Carlo simulation to calculate the cost per year-of-life-lost (YLL) averted 
of Smart Triage from societal, government, and patient perspectives. Healthcare utilization and lost work for seven 
days post-discharge were translated into costs and productivity losses via secondary linkage data.

Results In 2021 United States dollars, Smart Triage requires an annuitized program cost of only $0.05 per child, 
but results in $15.32 saved per YLL averted. At a willingness-to-pay threshold of only $3 per YLL averted, well 
below published cost-effectiveness threshold estimates for Uganda, Smart Triage approaches 100% probability 
of cost-effectiveness over the baseline manual triage system. This cost-effectiveness was observed from societal, 
government, and patient perspectives. The cost-effectiveness observed was driven by a reduction in admission that, 
while explainable by an improved triage mechanism, may also be partially attributable to changes in healthcare uti-
lization influenced by the coronavirus pandemic. However, Smart Triage remains cost-effective in sensitivity analyses 
introducing a penalty factor of up to 50% in the reduction in admission.

Conclusion Smart Triage’s ability to both save costs and avert YLLs indicates that patients benefit both economically 
and clinically, while its high probability of cost-effectiveness strongly supports multicenter scale up. Areas for further 
research include the incorporation of years lived with disability when sepsis disability weights in low-resource settings 
become available and analyzing budget impact during multicenter scale up.

Trial registration NCT04304235 (registered on 11/03/2020, clinicaltrials.gov).
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Background
Sepsis is a syndrome characterized by an inflammatory 
state triggered by a presumed or proven infection that 
results in organ dysfunction and/or death [1]. In severe 
cases in low-and-middle income countries (LMICs), dis-
ease-specific mortality and case fatality ratios can exceed 
20% [2, 3]. In Uganda, the burden of sepsis weighs heavily 
on the healthcare system and pediatric population, with 
a neonatal prevalence of 24.4% [4]. International sepsis 
treatment guidelines recommend delivering a bundle of 
care within one hour (defined in this paper as a “timely 
sepsis bundle”), based on evidence that earlier treatment 
reduces mortality and improves patient outcomes [5]. 
This bundle consists of antimicrobials alongside fluid and 
oxygen as clinically indicated [5].

In high income countries, evidence-based triage strat-
egies aimed at expediting sepsis treatment [6] involve 
laboratory investigations often inaccessible in LMIC 
settings, where delays in treatment leading to a high 
case fatality ratio are commonplace [7]. LMIC-specific 
guidelines such as the Emergency Triage Assessment 
and Treatment (ETAT) [8] and others [9, 10], show good 
predictive power for mortality and improve clinical out-
comes when successfully implemented [11–13]. How-
ever, the complexity of these guidelines face challenges in 
implementation, particularly in resource-poor environ-
ments where patient throughput and new-staff turnover 
is high [14, 15]. Infrastructural barriers and medication 
shortages further delay sepsis treatment even if a sick 
child has been effectively identified as having sepsis [15].

The Smart Triage program, which was implemented 
at the pediatric outpatient department at Jinja Regional 
Referral Hospital (JRRH) from 2020–2021, targeted 
these barriers in several ways [16]. First, we developed 
and implemented a model that used clinical variables 
for risk stratification based on the child’s predicted need 
for admission. This allowed sicker children to be prior-
itized during assessment by the existing JRRH clinical 
team [17]. This model was housed in a mobile application 
which required minimal training (compared to existing 
triage guidelines) for use by new team members. Sec-
ondly, a Bluetooth patient and treatment tracking system 
enhanced patient flow and organization by conveying 
patient status and risk stratification to the clinical team 
through an electronic dashboard in an automated man-
ner. Thirdly, outcome data from this patient tracking sys-
tem, such as time taken to deliver a sepsis bundle of care, 
was used to drive local quality improvement cycles. This 
combination of quality improvement cycles with a data-
driven approach has been shown to effectively improve 
patient outcomes in the LMIC setting [18].

In high-income settings, economic evaluations of 
quality improvement initiatives aimed at delivering 

early sepsis care have demonstrated reduced cost and 
increased benefit over standard of care [19–21]. How-
ever, such analyses have not been comprehensively 
conducted for triage programs in LMICs. LMIC analy-
ses that do exist may report partial costs only [14], or 
report intermediate outcomes such as quality improve-
ment scores with limited clinical interpretability [22]. In 
addition, these analyses focus on the perspective of the 
healthcare system [13, 22, 23], but do not consider out-
of-pocket costs and productivity losses. In LMICs such 
as Uganda that are yet to implement universal health 
coverage (UHC), where patients may incur out-of-pocket 
costs near or exceeding that of monthly earnings [24], 
inclusion of the societal perspective is important to 
explore the economic impact of healthcare interventions 
on patients. Lastly, no LMIC analysis has utilized eco-
nomic modelling techniques to incorporate healthcare 
utilization costs and link intermediate outcomes to clini-
cal endpoints. To address these gaps in the literature, we 
conducted a cost-effectiveness of the Smart Triage pro-
gram using a decision analytic model from a societal per-
spective, using secondary linkage data to link healthcare 
utilization to costs, lost work to productibility losses, and 
process outcomes to clinical endpoints. Results of this 
analysis may be used both to explore the impact of Smart 
Triage on patients and to inform scale up of Smart Triage 
to other Ugandan centers.

Methods
Objectives

1. Determine the incremental cost effectiveness ratio 
(ICER) for years-of-life lost (YLL) averted by the 
Smart Triage program compared to the baseline tri-
age infrastructure at JRRH, using the pre-interven-
tion phase at JRRH as the control.

2. Determine the probability of cost-effectiveness of the 
Smart Triage program under different willingness-to-
pay thresholds, compared to the baseline triage infra-
structure at JRRH.

3. Investigate the impact of out-of-pocket costs on cost-
effectiveness by secondary analyses separating the 
government and patient perspectives.

Description of primary clinical trial
The Smart Triage program, and corresponding clini-
cal trial, were implemented in the pediatric outpatient 
department at JRRH in Uganda, which serves children 
up to age 18 years presenting at various degrees of illness 
severity. A concurrent control site where Smart Triage 
would not be implemented was originally planned, but 
coronavirus disease (COVID) pandemic-induced delays 
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in site initiation precluded the use of this site as a con-
trol for our analysis. Therefore, the clinical trial, and data 
used for this analysis, is of a pre-post design. The com-
parator to Smart Triage was a manual triage system used 
in the pre-implementation phase at JRRH that is based 
on ETAT, a set up common in many comparable LMIC 
centers [25]. The pre-intervention phase stretched from 
April 2020 to December 2020, while the post-interven-
tion phase stretched from April 2021 to December 2021. 
January through March 2021 corresponded to the bulk of 
program inception/development, and outcome data from 
these months were not included in our analysis.

All presenting patients, except for those with scheduled 
appointments or procedures, were eligible for enroll-
ment. Primary outcome was defined as the difference, 
between the pre- and post-implementation phases, in 
the proportion of children who received a timely sepsis 
bundle (defined as within one hour of arrival at the out-
patient department). This choice of outcome is based on 
benchmarks established by international guidelines [1], 
and improving this outcome is associated with decreased 
mortality [26]. Enrolled children were followed up via 
telephone to their caregiver for in-hospital mortality (if 
admitted), 7-day post-discharge mortality, and 7-day 
post-discharge healthcare utilization rates. We optimized 
our follow-up rate through rigorous checks for phone 
number accuracy, repeat calls to unreached caregivers 
through a standardized process, and use of shared phone 
numbers, such as that of a neighbor, should a caregiver 
not have a personal number. This scheme has achieved 
a greater than 95% follow-up rate in previous studies by 
our group in the same region [27]. Further details on the 
Smart Triage program, clinical trial protocol, sample size 
calculations, and telephone follow-up have been pub-
lished elsewhere [16] with appropriate clinical trial regis-
tration on clinicaltrials.gov (NCT04304235, 11/03/2020). 
Ethics approval was obtained from Makerere Univer-
sity School of Public Health (MUSPH) Higher Degrees, 
Research and Ethics Committee (protocol number 743). 
MUSPH provided approval for the parent study and this 
economic evaluation to be conducted at Jinja Regional 
Referral Hospital in Jinja, Uganda; all study procedures 
were performed in accordance with the Declaration of 
Helsinki.

Economic model structure and assumptions
We conducted our analysis using a decision analytic 
model from a societal perspective, using secondary 
data from the literature to link health resource utiliza-
tion (HRU) rates to costs and process outcomes to clini-
cal endpoints [26, 28]. Sub-analyses were done from the 
government perspective to inform policy formation, and 
from the patient perspective to isolate economic impact 

on patients. The model (Fig. 1) mirrors a patient’s clini-
cal pathway from the time of presentation at JRRH to the 
post-discharge period up to seven days. The structure of 
this model were validated in consultation with local cli-
nicians at JRRH, and the post-discharge components 
mirror that of a recently conducted cost-effectiveness 
analysis of a post-discharge follow-up program for sep-
sis in Uganda [29]. Lastly, Smart Triage was implemented 
with heavy advocacy and leadership by local stakeholders 
for sustainability beyond the trial end date. Therefore, we 
assumed a program duration of five years for annuitiza-
tion of program costs and calculation of total patients 
impacted.

Key assumptions of our model include the sustainabil-
ity of Smart Triage beyond study end date, the generaliz-
ability of secondary linkage data used in the model to the 
Smart Triage population, and the adequacy of our seven-
day duration of patient follow-up. The rationale behind 
these assumptions, and further details on our model, are 
previously published [30]. Our analysis was designed and 
conducted according to the 2013 version of the Consoli-
dated Health Economic Evaluation Reporting Standards 
(CHEERS) statement [31], the most recent version at the 
time of analysis design, and is also in compliance with the 
revised 2022 version [32].

Model inputs
As the Smart Triage trial was powered for the pre-post 
difference in proportion of children receiving a timely 
sepsis bundle and not mortality difference, the estimated 
improvement in the latter for any observed improvement 
in the former was calculated through the literature odds 
ratio for mortality improvement if given a timely sepsis 
bundle vs. not [26]. YLLs were then calculated via the 
product of: 1) mortality rate, 2) total number of patients, 
3) difference between the average life expectancy in 
Uganda [33] and the average age of death in the Smart 
Triage trial. The pre-post difference in YLL represents 
the YLL-averted.

In terms of HRU costs, unit costs of care center visits 
with and without admission were obtained from the Dec-
ade of Vaccine Economics project [28, 34]. This source 
provided aggregate Ugandan HRU costing data from 
2018 in pediatric pneumonia, a leading cause of sepsis 
in LMICs [35]. Costs were segregated by government vs. 
patient perspectives and outpatient visits vs. inpatient 
stays. Government costs included facility and medical 
costs attributable to a clinical visit not directly borne by 
the patient. For patient costs, both direct costs (e.g. hos-
pital fees) and indirect costs excluding productivity losses 
(e.g. transportation) were included. Over 45 healthcare 
centers across Uganda were surveyed. The types and fre-
quency of HRU observed in the Smart Triage trial were 
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then multiplied with the relevant unit cost to obtain cost-
ing input for our analysis. For example, if a patient was 
admitted to JRRH for five days, the unit cost per diem 
for admission from the government perspective would 
be multiplied by five to obtain the corresponding cost on 
the system for admission. The same calculation would be 
repeated from the patient perspective to obtain out-of-
pocket costs. To track productivity losses, we measured 
caregivers’ lost days of work directly from our trial, then 
multiplied by the average daily wage in Uganda from 
the International Labor Organization [36] to obtain lost 
wages. We counted as caregivers: parents, relatives, and 
non-family caregivers (e.g. neighbor).

Lastly, program costs were tabulated directly from 
our trial; costs solely attributable to research were 
excluded. Program costs were counted from a public 
payer (i.e., the government’s) perspective, as patients 
were not charged out-of-pocket fees for Smart Triage 
due to the reusable nature of program components. All 
costs were inflated to 2021, the implementation year 

of Smart Triage, via the gross domestic product (GDP) 
deflator of the country in which they incurred, then 
converted to United States dollar (USD) using 2021 
average exchange rates. 2021 was chosen as that was 
the implementation year of Smart Triage.

Perspectives of analysis
Our analysis from the government perspective includes 
costs of care not borne out-of-pocket by patients (e.g. 
healthcare worker salary, hospital utilities, Smart Tri-
age program costs). Our analysis from the patient per-
spective includes out-of-pocket costs directly related to 
healthcare (e.g. hospital fees), costs indirectly related 
to having a hospitalized child (e.g. transportation), 
and productivity losses (lost wages). Our analysis from 
the societal perspective combines these two perspec-
tives to create a wholistic picture of Smart Triage’s 
cost-effectiveness.

Fig. 1 Decision analytic model for patient care pathway before and after Smart Triage implementation. USD = United States dollars, HOC = Health 
opportunity cost, WHO = World Health Organization, GDP = Gross domestic product



Page 5 of 15Li et al. BMC Health Services Research          (2023) 23:932  

Statistical analyses
Bivariate analyses were performed using the chi squared 
test for discrete outcomes and student t test for con-
tinuous outcomes. Fischer exact test was used in place 
of chi-squared test when the number of events were 
less than five. The incremental cost-effectiveness ratio 
(ICER) is represented by: (post–pre difference in cost)/
(post–pre difference in YLL). The ICER was calculated 
by multiplying out the decision analytic model after fill-
ing in probabilities for each branch point, and summing 
the corresponding total costs and YLL for each terminal 
node [37]. Monte Carlo simulations with 10,000 itera-
tions were used to simulate uncertainty of the ICER. 
Each of the 10,000 simulated ICERs were then plotted on 
a cost-effectiveness plane, with the vertical axis as costs 
and horizontal axis as YLL-averted. On this plane, sim-
ulations in the northeast quadrant represent increased 
clinical efficacy at an added cost, in the northwest quad-
rant reduced clinical efficacy at an added cost (should not 
adopt intervention), in the southwest quadrant reduced 
clinical efficacy but with cost savings, and in the south-
east quadrant increased clinical efficacy with cost savings 
(economic dominance – adopt intervention). The pro-
portion of simulations falling under each of these scenar-
ios were calculated.

Next, the probability of cost-effectiveness under vary-
ing thresholds for willingness to pay per YLL averted 
were plotted on a cost-effectiveness acceptability curve 
(CEAC). The CEAC was generated by modelling increas-
ing monetary amounts a payer would be willing to pay to 
avert one YLL; these amounts correspond to lines with 
increasing slopes on the cost-effectiveness plane. The 
proportion of simulated ICERs that fall below each line 
on the cost-effectiveness plane corresponds to the prob-
ability of cost-effectiveness at that willingness to pay 
threshold [37]. Therefore, plotting “proportion of ICERs 
below the line” on the vertical axis and “slope of line” on 
the horizontal axis creates the CEAC.

For the above analyses, annuitization and discount-
ing rates of 3% per annum were used for costs and YLL, 
in congruence with a systematic review of other LMIC 
economic evaluations [38], assuming a five year pro-
gram duration. All analyses were performed using R [39]. 
Additional details regarding statistical analyses and the 
Monte Carlo simulation may be found in our published 
protocol [30].

Definition of cost‑effectiveness
As mentioned above, the CEAC plots the probability of 
cost-effectiveness of Smart Triage over the baseline triage 
infrastructure at increasing willingness to pay thresholds. 
A cost-effectiveness threshold of a country is its chosen 

willingness to pay threshold to adopt an intervention if, 
at or below that threshold, an intervention has a high 
probability of cost-effectiveness over the comparator. 
However, most LMICs, including Uganda, do not have an 
formally established cost-effectiveness threshold. There-
fore, for our analysis, we selected a threshold based on 
projected health opportunity costs (HOC) of Uganda 
(threshold = $174.12 in 2021 USD). As many cost-effec-
tiveness analyses have historically used multiples of GDP 
per capita ($883.89 in 2021 USD for Uganda), as recom-
mended by the World Health Organization (WHO), we 
have also stated our results in the context of this stand-
ard [40]. See “Discussion – strengths of analysis” section 
for our rationale for adopting the HOC-based threshold, 
along with limitations for using either threshold.

Sensitivity analyses
We performed one-way deterministic sensitivity analyses 
using different annuitization rates (0%, 1%, 5%), and by 
removing the assumption that Smart Triage would con-
tinue past the study end date. The upper limit of 5% was 
chosen in congruence with variations in economic evalu-
ation guidelines in global health [41], stemming from the 
variations in economic growth rates of different LMICs 
[42]. In a scenario-based sensitivity analysis, we also 
excluded months where patient load at JRRH outpatient 
department was lower than 50% of the annual median, 
to account for months where patient load abnormally 
slowed down due to COVID-pandemic induced travel 
restrictions. The rationale for this sensitivity analysis 
was that the primary outcome of Smart Triage, receiv-
ing a timely sepsis bundle, is a process outcome that may 
be affected by decreases in patient load from reasons 
such as travel restrictions. For this sensitivity analysis, 
the months excluded were September 2020 from the 
pre-intervention phase; and January, June, July, August 
2021 from the post-intervention phase; corresponding to 
months where patient load reduced to lower than 50% of 
the annual median. For each one-way sensitivity analysis, 
we also applied a probabilistic sensitivity analysis using 
Monte Carlo simulation to account for parameter uncer-
tainties within our model, as described previously.

Since the cost-effectiveness of Smart Triage was 
driven mainly by a reduction in admissions rather than 
an improvement in receiving a timely sepsis bundle, we 
performed a post-hoc sensitivity analysis whereby the 
absolute reduction in admission was further reduced in 
magnitude by 25%, 50%, and 75%. The rationale for this 
sensitivity analysis is that a portion of the reduction in 
admission rate may be driven by other factors independ-
ent from the efficacy of Smart Triage, including changing 
HRU behaviors throughout the COVID pandemic.
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Results
Demographics and conduct of Smart Triage trial
The sex and age distribution of children were similar 
between the pre- and post-intervention phases, with the 
vast majority (over 85%) being children under 5 years. 
Malnutrition rates and HIV positivity were evenly dis-
tributed between phases. The rate of HIV positivity was 
low, but more than a third of patients have never been 
tested. Among admitted patients, greater than 90% 
were admitted for suspected infection. Diagnoses for 
non-admitted patients were not gathered, due to con-
straints in trial human resources. Approximately 10% of 
patients received a triage category of “emergency”, while 
the remaining 90% were split between “priority” and 
“non-urgent.” Of note, 41 patients were missing triage 
priority data due to technical difficulties. Data recovery 
was unfortunately not possible despite the best efforts of 
the research team. However, triage priority was not an 
input variable to the economic model and therefore does 

not affect our analysis and key findings. Lastly, greater 
than 90% of patients resided outside of the Jinja Central 
municipality, thereby necessitating some form of trans-
portation to JRRH. We achieved a high rate of follow-up, 
with only 1.8% and 1.4% of patients lost to follow-up in 
the two phases respectively (Table 1).

Clinical outcomes
The parent clinical trial did not find statistically signifi-
cant differences between the pre and post-implemen-
tation phases in the proportion of children receiving 
a timely sepsis bundle, in-hospital mortality, or 7-day 
post-discharge mortality. However, for total mortal-
ity, there was a statistically significant improvement 
in the post-intervention phase (absolute risk reduc-
tion = -0.6% [95% CI -1.2 to -0.05, p = 0.016]). In the 
pre-implementation phase, 0.7% (95% CI 0.4 to 1.3) 
of children received a timely sepsis bundle, com-
pared with 0.7% (95% CI 0.4 to 1.2) of children in the 

Table 1 Demographics of patients enrolled into the Smart Triage trial at Jinja Regional Referral Hospital

NB: The pre-intervention phase was shorter by a month due to a delayed start at the study center for pandemic-related logistical reasons

Count data shown as count (%), continuous data shown as mean (sd)

sd standard deviation, JRRH Jinja Regional Referral Hospital, HIV human immunodeficiency virus

Variables Pre‑intervention phase (%/sd) Post intervention phase (%/sd)

Dates corresponding to each phase April 27, 2020 to December 31, 2020 April 1, 2021 to December 31, 2021

Number of enrolled patients 1402 1942

Male to female 729 (52.0) to 673 (48.0) 1015 (52.3) to 927 (47.7)

Mean age (years) 2 (2.5) 2 (2.0)

Age < 5 years 1246 (88.9) 1794 (92.4)

Wasting (acute malnutrition)

 Moderate (height to weight Z score -2 to -3) 76 (5.4) 62 (3.2)

 Severe (height to age Z weight < -3) 79 (5.6) 46 (2.4)

Stunting (chronic malnutrition)

 Moderate (height to age Z score -2 to -3) 166 (11.8) 189 (9.7)

 Severe (height to age Z score < -3) 131 (9.3) 167 (8.6)

HIV status

 Positive 8 (0.6) 14 (0.7)

 Negative 900 (64.2) 1216 (62.6)

 Unknown 494 (35.2) 671 (34.6)

Hospital admission within last 6 months 268 (19.1) 285 (14.7)

Infection admission diagnosis 297 (91.7) 281 (96.2)

Triage priority by Smart Triage platform

 Non-urgent NA 857 (44.1)

 Priority NA 840 (43.3)

 Emergency NA 204 (10.5)

Travelled from outside Jinja central (where JRRH is located) 1285 (91.7) 1766 (90.9)

Lost to follow-up 25 (1.8) 27 (1.4)

 No phone number 6 (0.4) 5 (0.3)

 Wrong phone number recorded 11 (0.8) 18 (0.9)

 No answer on follow-up 8 (0.6) 4 (0.2)
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post-implementation phase, (p > 0.99). Among admit-
ted patients, we found in-hospital mortality rates of 
2.9% (95% 1.5 to 5.5) and 1.1% (95% CI 0.22 to 3.4) dur-
ing the pre- and post-implementation phases respec-
tively (p = 0.13). Finally, follow-up completed 7 days 
after return home showed a 7-day mortality rate of 
0.2% (95% CI 0.0 to 0.6) and 0.1% (95% CI 0.0 to 0.4) in 
the pre- and post-implementation phases respectively 
(p = 0.798) (Table  2). The average age of death during 
the Smart Triage trial, used to calculate YLL averted in 
the Monte Carlo simulation, was 2.0 years (95% CI 0.7 
to 3.0).

Program costs
The cost of implementing the Smart Triage platform, 
annuitized over a five-year duration, was $1369.82 
per year in 2021 USD. With an average of 28,000 chil-
dren presenting at JRRH’s outpatient department per 
year from 2020 to 2022, the average program cost per 
child is $0.05. Program costs were comprised of infra-
structural costs (e.g. electronic dashboard indicating 
patient triage status), shared consumables (e.g. reusable 
radiofrequency patient tracking identification bands), 
or wages (e.g. one-time technologist fee for set-up). 
Details are available in Additional file 1.

Health resource utilization
There was a clinically and statistically significant reduc-
tion in the admission rate at JRRH between the pre-
intervention and post-intervention phases (-8.4% [95% 
CI -11.1 to -5.7], p < 0.001). There were also reductions in 
seeking care (-2.8% [95% CI -4.5 to -1.1], p = 0.001) and 
readmissions at any health facilities (-1.2% [95% CI -2.1 
to -0.3], p = 0.008) after leaving JRRH. The mean length 
of stay for primary admission and readmission for both 
phases were 4 days (Table 3).

For each pattern of HRU (admit vs. non-admit at JRRH 
and readmission vs. seek care again without readmis-
sion vs. no revisit at all after leaving JRRH), average days 
of work missed are shown in Table 4, along with corre-
sponding losses in productivity. As expected, HRU pat-
terns that involve admission and/or readmission results 
in greater missed work, and therefore higher productivity 
losses.

Cost effectiveness of Smart Triage – societal perspective 
(base‑case analysis)
From the societal perspective, Smart Triage resulted in 
an incremental cost of -$1321.86 per 1000 children (95% 
CI -4735.48 to 444.73) and an incremental YLL averted 
of 86.3 years per 1000 children (95% CI 37.7 to 152.3), 
corresponding to an average ICER of -$15.32 per YLL 

Table 2 Clinical outcomes in the pre-implementation and post-implementation phases of Smart Triage

JRRH Jinja Regional Referral Hospital, RR relative risk, ARR  absolute risk reduction, NS not significant

Fisher exact test used instead of Chi-squared test where indicated (*)

Pre‑intervention 
phase (95% CI) 
(N = 1402)

Post‑intervention 
phase (95% CI) 
(N = 1942)

p‑value RR (95% CI) 
if statistically 
significant

ARR (95% CI) 
if statistically 
significant

Received sepsis bundle within one hour (%) 0.7 (0.4 to 1.3) 0.7 (0.4 to 1.2) > 0.99 NS NS

In‑hospital mortality for admitted patients 
(%)

2.9 (1.5 to 5.5) 1.1 (0.22 to 3.4) 0.13 NS NS

7‑day mortality after leaving JRRH (%) 0.2 (0.0 to 0.6) 0.1 (0.0 to 0.4) 0.798* NS NS

Total mortality (%) 0.9 (0.5 to 1.5) 0.3 (0.1 to 0.7) 0.016 0.33 (0.13 to 0.89) -0.6 (-1.2 to -0.05)

Table 3 Health resource utilization probabilities in the pre-implementation and post-implementation phases

JRRH Jinja Regional Referral hospital, RR relative risk, ARR  absolute risk reduction, NS not significant

Pre‑intervention 
phase (95% CI) 
(N = 1402)

Post‑intervention 
phase (95% CI) 
(N = 1942)

p‑value RR (95% CI) 
if statistically 
significant

ARR (95% CI) 
if statistically 
significant

Rate of admission (%) 22.3 (20.2 to 24.6) 13.9 (12.4 to 15.5) < 0.001 0.62 (0.54 to 0.72) -8.4 (-11.1 to -5.7)

Rate of seeking any care after leaving JRRH 
(%)

7.9 (6.6 to 9.4) 5.1 (4.2 to 6.2) 0.001 0.65 (0.50 to 0.84) -2.8 (-4.5 to -1.1)

Rate of readmission after leaving JRRH (%) 2.4 (1.7 to 3.4) 1.2 (0.8 to 1.8) 0.008 0.50 (0.30 to 0.84) -1.2 (-2.1 to -0.3)

Mean length of stay if admitted at JRRH 
(days)

4 (3.8 to 4.5) 4 (3.9 to 4.4) 0.646 NS NS

Mean length of stay for readmission (days) 4 (2.8 to 4.8) 4 (3.1 to 5.1) 0.312 NS NS
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averted ($15.32 saved per YLL averted). On the cost-
effectiveness plane, 91.9% of the Monte Carlo simulations 
fall within the southeast quadrant, corresponding to 
both cost-savings and improved clinical outcome, while 
the remaining 8.1% of simulations fall within the north-
east quadrant, corresponding to improved clinical out-
come at an added cost (Fig. 2, Additional file 2). On the 
CEAC, 95% probability of cost-effectiveness was reached 
at approximately $3 USD, well before both the HOC-
based threshold of $174.12 USD and WHO threshold for 
an “extremely cost-effective intervention” of 1 × GDP per 
capita ($883.89 USD) (Fig. 3).

Government and patient perspectives
From the government perspective, Smart Triage 
resulted in an incremental cost of $5.34 per 1000 chil-
dren (95% CI -442.37 to 554.87) and an incremental 
YLL averted of 86.3 years per 1000 children (95% CI 
37.2 to 153.1), corresponding to an average ICER of 

$0.06 per YLL averted. 52.7% of the Monte Carlo simu-
lations result in both cost-savings and improved clinical 
outcome, while the remaining 47.3% result in improved 
clinical outcome at an added cost (Additional file  2). 
The ICER was less cost-effective compared to base case 
(Fig.  4), but 95% probability of cost-effectiveness was 
nonetheless reached well before both HOC-based and 
WHO thresholds (Fig. 3).

From the patient perspective, Smart Triage resulted in 
an incremental cost of -$1319.33 per 1000 children (95% 
CI -4604.14 to 319.00) and a YLL averted of 86.4 years 
per 1000 children (37.0 to 151.8), corresponding to an 
average ICER of -$15.27 per YLL averted ($15.27 saved 
per YLL averted). 93.9% of the Monte Carlo simula-
tions result in both cost-savings and improved clinical 
outcome, while the remaining 6.1% result in improved 
clinical outcome at an added cost (Additional file 2). The 
ICER distribution was comparable to base case (Fig.  4), 
and 95% probability of cost-effectiveness was reached 

Table 4 Average days of paid employment missed by caregivers, stratified by health resource utilization pattern

JRRH Jinja Regional Referral hospital, USD United States dollar

Average days of paid 
employment missed (95% CI)

Productivity cost 
(2021 USD) (95% 
CI)

Admitted at JRRH, no further care sought 4 (4 to 5) 13.59 (11.32 to 15.53)

Not admitted at JRRH, no further care sought 2 (2 to 2) 6.15 (5.50 to 6.79)

Admitted at JRRH, readmitted at any center after discharge 12 (5 to 18) 39.79 (17.15 to 56.62)

Not admitted at JRRH, admitted at any center after leaving JRRH 6 (5 to 7) 18.44 (14.56 to 22.00)

Admitted at JRRH, sought further care after discharge without readmission 6 (3 to 8) 17.79 (9.38 to 25.24)

Not admitted at JRRH, sought further care after leaving JRRH without readmission 4 (3 to 4) 12.29 (10.35 to 13.91)
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well before both HOC-based and WHO thresholds 
(Fig. 3).

Sensitivity analyses 
The cost-effectiveness of Smart Triage was preserved 
in sensitivity analyses assuming annuitization rates of 
0%, 1%, or 5%. Namely, 89.0%, 92.0%, and 91.9% respec-
tively of the Monte Carlo simulations resulted in both 
cost-savings and improved clinical outcomes, while the 

remaining 11.0%, 8.0%, and 8.1% respectively resulted in 
improved clinical outcomes at an added cost (Additional 
file  3). ICERs showed similar distributions to the base 
analysis (Fig.  4). For all three scenarios, the probability 
of Smart Triage being cost-effective reached 95% by $4 
USD, well under the HOC-based and WHO thresholds.

If we remove the assumption that Smart Triage would 
be sustained after study end date for a program duration 
of five years, cost-effectiveness was still maintained. In 
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this scenario, only costs incurred/saved and YLL averted 
during the study timeframe were counted, and program 
costs were not annuitized. 89.2% of the Monte Carlo 
simulations resulted in both cost-savings and improved 
clinical outcomes, while 10.8% resulted in improved clin-
ical outcomes with an added cost (Additional file 3). The 
ICER showed a similar distribution to the base analysis 
(Fig. 4). The probability of Smart Triage being cost-effec-
tive reaches 95% at $4 USD, well under the HOC-based 
and WHO thresholds.

Removal of months where patient attendance at the 
JRRH outpatient department dropped to 50% of the 
annual median showed an increase in cost savings and a 
corresponding shift towards added cost-effectiveness of 
the ICER compared to the base analysis. However, the 
confidence interval for cost and ICER were much wider 
than that of the base analysis (Fig. 4).

Our post-hoc analysis of reducing the absolute reduc-
tion in admissions by a penalty factor of 25%, 50%, and 
75% of the observed value showed that a high probabil-
ity of cost-effectiveness was attained below both HOC-
based and WHO thresholds with a penalty factor of up to 
50% (Fig. 5).

Discussion
Interpretation and impact of analysis
Our analysis shows Smart Triage achieves greater 
than 95% cost-effectiveness under a willingness to pay 

threshold calculated based on Uganda’s HOC (see “Dis-
cussion—strengths of analysis” section for further dis-
cussion). Furthermore, this cost-effectiveness is achieved 
well under the WHO threshold for defining an interven-
tion as “extremely cost-effective” [43], which is one GDP 
per capita of the country of implementation ($858.10 
in 2021 USD for Uganda) and is much higher than the 
HOC-based threshold of $174.12. For our base case anal-
ysis from the societal perspective, Smart Triage results 
in $15.32 USD saved per YLL averted (-$1321.86 [95%CI 
-4735.48 to 444.73] for 86.3 YLL averted [95%CI 37.7 to 
152.3] per 1000 children), with a program cost of $0.05 
USD per child. This small initial investment is only a min-
ute fraction of the existing average hospital spending of 
$7 to $12 per child in Uganda for pneumonia, one of the 
most common causes of sepsis in LMICs [34]. Cost-effec-
tiveness was not sensitive to changes in annuitization 
rate up to 5%. In addition, even if Smart Triage were not 
sustainable past the study end date, with incurred costs 
concentrated into the study period and no further YLL 
averted past the study period, cost-effectiveness persists.

We conducted our base case analysis from the societal 
perspective, with a sub-analysis from the patient per-
spective, to capture the economic impact of Smart Tri-
age on patients, not just on the healthcare system like 
previous analyses [13, 22]. The patient perspective is 
important as a significant portion of healthcare costs are 
borne out of pocket in Uganda, which does not yet have 
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UHC. In a Ugandan cross-sectional survey of pediatric 
sepsis patients, the hospital fee and medications alone 
cost $15 USD, increasing to $59 USD in private not-for-
profit facilities [24]. In context, the average monthly wage 
in Uganda is $57 USD [36]. Additional costs not directly 
related to healthcare, such as transportation, meals while 
hospitalized, and hired childcare for siblings further 
increase the already heavy financial burden of having 
a hospitalized child [24, 44]. In this context, our analy-
sis reassuringly indicates a high probability of economic 
dominance of Smart Triage from both the societal and 
patient perspectives (91.9% and 93.9%), suggesting that 
Smart Triage results in both cost-savings for patients and 
benefits in YLLs-averted, benefiting patients both eco-
nomically and clinically.

From the government perspective, not only did the 
probability of cost-effectiveness approach 100% well 
before the HOC-based threshold (Fig. 3), but half of the 
Monte Carlo simulations were economically dominant 
over the pre-existing standard (Additional file  2), sug-
gesting both cost savings and YLLs averted. A cross-
sectional survey of Ugandan policy stakeholders showed 
that 95% felt that cost-effectiveness was an important 
factor in policy formulation, but unfortunately, a lack of 
personnel trained in economic evaluation coupled with 
limitations in information technology and data availabil-
ity often prevent the use of cost-effectiveness analyses in 
drafting policy [45]. To this end, a favorable cost-effec-
tiveness result for Smart Triage at JRRH provides strong 
economic rationale for further testing in additional cent-
ers to explore the adoption of Smart Triage into policy.

To assist in scaling up Smart Triage, our low program 
cost per child may be used to project initial investment 
cost at subsequent sites based on patient capacity, while 
scale up costs not encountered in our single center study 
may be recorded during scale up and used to model 
the budget impact of a wider adoption of Smart Triage 
in Uganda [46]. Additionally, implementation research 
on other successfully adopted health programs in sub-
Saharan Africa show that a well-delineated scalable unit 
is paramount to successful expansion from a single test 
site to subsequent sites [47]. To this end, Smart Tri-
age is designed to be implemented in an entire outpa-
tient department, representing a clearly defined scalable 
unit. To further facilitate cost-effective scale up, we have 
minimized program costs by using non-proprietary and 
locally-acquired equipment where possible. Also, the 
training of local Smart Triage “champions” who would 
subsequently train new staff facilitated local familiarly 
with the platform that was sustained by existing local 
leadership rather than costlier extended support from 
high income country partners. These techniques to 
minimize capital cost and maximize local ownership are 

proven strategies towards sustainability in other newly 
scaled healthcare interventions in sub-Saharan Africa 
[27, 48, 49], and will be used during Smart Triage’s scale 
up.

Our analysis provides an evidence-based model and 
input parameters that could advance health economics 
research in the areas of pediatric sepsis care in Uganda 
and elsewhere. Our study findings also present policy 
implications and further research needs for the system-
wide strengthening of pediatric sepsis care in Uganda. To 
this end,we are working with our partners at Walimu and 
the United Catholic Medical Bureau to expand the Smart 
Triage platform to four additional hospitals in Uganda. 
At these sites, we will conduct external validation of the 
model and solidify the platform’s scalability for further 
dissemination [50].

Strengths of analysis
Our use of economic modelling techniques enabled the 
calculation of costs from healthcare utilization rates and 
linkage of intermediate outcomes (timely sepsis bun-
dle) to clinical outcomes (YLL-averted). This technique 
results in a more comprehensive cost-effectiveness esti-
mate to inform policy and allows for an estimate involv-
ing clinical endpoints such as YLL-averted despite our 
parent trial being powered for timely sepsis bundle, a 
process outcome. A previous economic evaluation of 
an ETAT-based pediatric triage system in Kenya, the 
ETAT + , also showed cost-effectiveness. However, this 
analysis utilized only program costs and the primary out-
come of the parent cluster randomized trial [22]. As this 
primary outcome was a multi-domain quality improve-
ment score, the ICER was difficult to interpret clinically. 
Another trial examining the ETAT + in Rwanda reported 
partial costs, but did not conduct a full cost-effectiveness 
analysis [14]. One analysis utilizing decision analytic 
modelling showed cost-effectiveness for the integrated 
management of neonatal childhood illness program in 
India, a program with some parallels to ETAT [51]. How-
ever, the interventions included encapsulated the entire 
inpatient and post-discharge timeline, with only a small 
fraction focusing on triage. To our knowledge, our use of 
economic modelling to evaluate a pediatric sepsis triage 
program is novel in the LMIC setting.

Another strength of our analysis is our novel use of an 
HOC-based willingness to pay threshold to define cost-
effectiveness. Historically, cost-effectiveness analyses 
have used multiples of GDP per capita as defined by the 
WHO. While easy to understand, use of GDP per capita 
does not take into account an intervention’s cost-effec-
tiveness relative to other existing interventions in a coun-
try [40, 52]. However, as all healthcare budgets are finite, 
funding a new intervention will by definition result in 
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not funding other proposed interventions and/or cutting 
back on existing interventions. The HOC of a given coun-
try is defined as the current impact, per currency unit 
spent on existing healthcare interventions, on the dis-
ability adjusted life years (DALYs) averted in that country. 
Therefore, basing a cost-effectiveness threshold on HOC 
assesses novel interventions in the context of existing 
programs and allows for optimum allocation of resources 
in resource limited settings. The exact methodology to 
determine this threshold uses instrumental variables to 
account for hidden confounders and reverse causation 
between currency spent and DALYs averted. These meth-
ods are aptly described in the reference publication [53]. 
The HOC-based threshold for Uganda is $174.12 in 2021 
USD.

Lastly, our analysis includes post-discharge follow-
up data in healthcare utilization, clinical outcome, and 
productivity loss. These data add comprehensiveness to 
our analysis, in contrast to existing literature that largely 
focuses on the inpatient period [12, 14, 22]. To this end, 
our high rate of follow-up also minimizes missing data. 
Our inclusion of productivity losses and indirect costs 
of healthcare (e.g. transportation and purchased meals 
while in hospital) even after discharge is important, for as 
mentioned, the economic burden of illness on families is 
not limited to the direct costs of healthcare such as hos-
pital fees and medication costs [24, 34].

Limitations of analysis
An important limitation of this analysis is that we did not 
achieve an improvement in the primary target outcome 
– proportion of children receiving a timely sepsis bun-
dle. Instead, the cost effectiveness observed was driven 
by other factors, in particular a reduction in admission 
rate, that may have been confounded by factors such as 
COVID-related shifts in HRU behavior. The Smart Tri-
age trial was originally designed as a difference in dif-
ferences study, with a control site able to account for 
changes unrelated to Smart Triage implementation at 
JRRH [16]. Unfortunately, delays induced by the pan-
demic prevented trial initiation at the control site until 
well after Smart Triage implementation at JRRH, thereby 
precluding the usability of the control site for this analy-
sis. Reassuringly, in corresponding with local clinicians, 
no major changes to the triage infrastructure apart from 
Smart Triage were implemented within the duration of 
our study. Symptom screening of patients for diversion to 
COVID designated centers (of which JRRH was not) was 
implemented in the initial months of the pandemic and 
encapsulated both phases of the study, thereby less likely 
to introduce bias. Of course, while these observations are 
reassuring, the cost-effectiveness of Smart Triage from 

this analysis requires confirmation in additional sites in a 
“new normal” era.

Despite potential confounding, a reduction in admis-
sion due to Smart Triage is entirely plausible. For 
example, bringing sicker patients to the front of the 
assessment queue may have given these patients prior-
ity for consideration of hospital admission, a limited 
resource in LMIC settings. Simultaneously, a low-risk 
classification by Smart Triage’s data-driven algorithm 
may have added confidence for clinicians to treat patients 
with mild to moderate symptoms as outpatients, whereas 
prior to Smart Triage, a conservative recommendation 
of admission may have been offered to these patients. 
While the observed reduction in admissions that drove 
cost-effectiveness is likely multi-factorial in etiology, our 
post-hoc sensitivity analysis reassuringly showed that the 
cost-effectiveness of Smart Triage under the HOC-based 
threshold is preserved when a penalty factor of up to 50% 
is applied to the reduction in admission rate.

An additional limitation to our analysis lies in our ina-
bility to model years lived with disability due to the lack 
of long-term quality-of-life data and corresponding dis-
ability weights in sepsis survivors in the LMIC context. 
Extrapolation from HIC data would be inaccurate given 
the vast differences in social support systems and stand-
ards of care between HICs and LMICs. However, our 
model may be rerun to incorporate such data when avail-
able, to calculate incremental cost per DALY averted of 
Smart Triage. This re-analysis would be informative, as 
the HOC-based threshold is based on DALYs averted and 
not YLLs averted. Mathematically speaking, as DALYs 
are calculated by summing YLLs and years lived with dis-
ability, some YLLs averted by Smart Triage may be offset 
by years lived with disability. This offset would potentially 
lower the denominator for ICER, increasing the ICER 
and diluting cost-effectiveness. Nonetheless, our obser-
vation of cost-effectiveness well before the HOC-based 
threshold provides ample room to maintain cost-effec-
tiveness even if years lived with disability were incorpo-
rated, despite this potential dilution.

A third limitation lies in our inability to count opportu-
nity costs unrelated to missed wages, such as the death of 
livestock or spoilage of unattended crops that may have 
been used to generate income [24]. The variable nature of 
the source of these losses makes them difficult to count 
comprehensively, and a review of existing LMIC costing 
studies show a large variation in the breadth of opportu-
nity costs captured [44]. However, the severity of these 
opportunity costs is likely linked to higher HRU rates. 
Therefore, if Smart Triage can indeed reduce HRU such 
as need for admission, these opportunity costs would 
likely be reduced.
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Finally, scaling up of interventions must consider costs 
of scale up as well as budget impact [46], which are not 
captured in a cost-effectiveness analysis at a single site. 
Nonetheless, the high cost-effectiveness of Smart Triage 
at JRRH provides ample buffer for unanticipated scale 
up costs, while the low program cost is reassuring from 
a budget perspective. A subsequent budget impact analy-
sis, informed by scale up costs measured during a multi-
center trial, may be conducted to confirm Smart Triage’s 
adoptability as an intervention for pediatric sepsis triage 
at the regional and national levels.

Conclusion
Smart Triage reached a high probability of cost-effec-
tiveness as defined by an HOC-based cost-effectiveness 
threshold, which assesses proposed interventions based 
on the country-specific per dollar impact on healthcare 
outcomes. This cost-effectiveness provides strong ration-
ale for multicenter scale up. Also, Smart Triage benefits 
patients both clinically and economically, in terms of 
YLLs averted and cost savings respectively. Our analysis 
represents the first application of economic modelling 
methods to evaluate the cost-effectiveness of a pediatric 
sepsis triage intervention, providing a more comprehen-
sive analysis than those based on only program costs and 
surrogate outcomes. Smart Triage’s cost-effectiveness 
was primarily driven by a reduction in admissions, which 
may be confounded by changes in healthcare utilization 
induced by factors such as the COVID pandemic. Reas-
suringly, sensitivity analyses using a penalty factor of up 
to 50% for reduction in admissions show persistent cost-
effectiveness. Areas for future research include confirma-
tion of our results in a post-pandemic “new normal” era, 
calculation of cost per DALY averted using long-term 
disability data when available, and modelling of budget 
impact based on scale up costs measured through a larger 
multicenter trial. To this end, we are actively pursuing 
expansion into additional sites in collaboration with local 
agencies.
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